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ON SLU.ATION OF SEQUENCES

by

B. . Golubov

In [1] Bucc and Pollard used the following well-known one-to-one

correspondence between numbers of the interval (0,11 and subsequences of a natural

series. If x E (0,1) an! x 0 0, Cl1 (x)a 2 (x)... is the decomposition of the nimbers

x into an infinite dyadic fraction, then x -- inkS, where nk are such chat

an (x= 1, 1n(x) - 0 or n, nk (k = 1,2,...). It is •e-y tu see that the re-

versp ia alzu true, that is, a certain point x E (0,13 corresponds, acccrding to

this very same law, te every rigorously increasing sequence !nk), and, conse-

quently, the correspondence is one-to-one. In the present note, starting with

this correspondence, some results contaired in [1-5,121 are generalized and analo-

gous theorems are formulated for perxitations of numerical series and sequences.

Hereover, a number of theorems are cited in which functional series and sequences

are involved-

We introduce the following notation. If (s is a cortain sequence,

then Its subsequence, defined by the number x E (0,1j. will be denoted by

is(nfx), and the set of limit points Irs I by 'n . Furthermore, if T = !a

Translated from tzv. VUZ, Mat. tBull. Higher Educat. -Ansts., Math.], No. 4(41),
pp. 47-55 (1%4).

-By an infinite dyadic fraction is meant a fraction whose signs include an

infinite sce of onea.
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is a regular su-mtion method, w~e cicoote **(X)- 4.,, ~ (k. x).

The following theorem generalizes the result of Buck and Pollard (Cl1,

t cheorem 1, and also [73, p. 404, theorem 5.6).

Theorem 1. For every sequence [L I there is focind a set Q C (O,l], of

ccmplete measure and of zhe second category on (0,1], such that

js(n, x)j'_- s)j' Xhe3flx E Q

Proof. Let n kj be an arbitrary rigorousiy increasing sequence of

positive numbers outside of whi,-h there remaiua an infinite set of terms of the

natural seriee. We take two real numbers a and b (a < b) and form the sequen.ce

Un I, setting u - a when n- n and u - b when n r-1k (k - 1,2,...). As fol).ows
nl (n kc b lms

from the theorem I of Buck and Pollard L1), a-ifim;(, X)<•lim-(n, x).b almost

everywhere on (0,11. Hence, whatever the rigorously increasing sequence In j

that exhausts the whole natural seriex or that forms a part of it, almost all

subsequences of the latter always contain an Infinite set of terms from tnks,

each its own.

From Is E we choose not nore than a countable set of point* (v 1 I dense

in Is I. For every point v there exists a sequence in(i)l such that
n k

tim s (M) , vi. As can be seen from the remark made above, there exists a set
k nk

A C (S,lj of full measure such that v. E fs(n,x)V vnen x E A. - We set A - PIA
ii

Then mes A 0 1 and {s(nx)j' = is whec x E A. It the same way, relying on the
n

theorem of Keogh and Petersen N3] for the case when T is convergence, we find

a second-category set B C- (0,11 such that ts(n,x)" D Sn j when x E B. Setting

By a second-category set is meant a set which is the complement of a first-

category set.
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Q A + B, we ccaplete the proof of the theorem, since the rel-erp-. inequality

' s(n,x)'" C [s nj is obviously valid for all x.

Remark I. Lot us show that the theorem of Suck and Pollard, which is

Fneralized by theorem 1, permits determi~ation of the error of an assertion of

Goffman and Petersen contained in their paper [13-. In their article the authors

introduce the concept of a submeihod of the regular summation method. Namely:

if T a : n,mI1 is the regular method, every method Ttakj defined by the matrix

;jO m•, where fnk 1is au arbitrary subsequence of the natural series, is said tonkm kJ

be a submethod of T. Thus, every submethod is defined by a subsequence InkI of

the natural series. Consejuently, the correspondence x-- O.nk of 'uck and Pollard

permits us to establish a one-to-one correspondence between the set of all aub-

methods T 'in of the method T and the set of points x E (O,l]. We denote

T1,nkj - T(x), where x - (n J. Then theorem 5 from [13) can be formulated in the

following way:

Theorem. Let T be the regular method, and let (s ns_] be a bounded sequence,

not ummable bv the method T. If Q is the set of all points x 4 (0,1], for each

of which T,I:x) sums ts j, then the measure of the set Q is _ _qua_ Lo 0 or 1

and both ciases are Egossble.

As a matter of fact, as follows from theorem I (or from the weaker

theorer• ol; Euck and Pollard), mes Q - 0 always. We nrze also that theorem 3

from!' the iuame article [ 13i1 of Coffm~an and Petersen cauntct be considered proved

either, s!nce there is an ezror in its proof.

The following is a strengthening of the theorems of Agnew '23 and I
Keogh and Petersen [3,4).

Theorem 2. if Is C (n - 1,2,...), jhen for every regular method-herm_-I sn -, -------

-T = ian.k there exists a set Q of second catelory on (0,1) such that

"-3-



But if tsn " is not bounded, the-assertion of the theorem ts not true.
SProof. !at isn

__._ . . %n T 1,2,...) Then, without loss of generality it 4;

can be assumed that the mechod T - ;ja .& . --s finite-rowed. According to the
n,k

theorem of Agnew [2•, there exists a poirt x3 E (0,1) such that a ' a

LeC us show that the very same inclusion is valid for all points of a certain

set D - (0,lj, everywhere dense in (0,13, i.e. (a (x)a [a when x E D.

SIndeed, let k be an arbitrary positive ntumber and let the point x' be such that

W) a CL' (X •we n -> k, while the first k dyadic signs of the expausion x*

are arbitrary, but fixed. Then, by varying the signs of a (x") for k < n -• 2k,
aA

it is possible to get a point x" at which the total number of ones among the first

2k signs of the expansion coincides with the nuemer of ones among the first 2k

signs of the expansion xO. For this point, obviously, ja o(xd)JI D (s Y Since A
0' n

the natural index k is arbitrary, the set D of all x' that can be obtained in the

indicated manner, starting with the point x is everywhere dense in (0,1).

Now let (u lbe no more than a countable set of points from (sj', dense

k
•Win eS . W denote by S the set of all points x E (0,1i, for each of which AU

n n,M
Ithere exists a number u = u(x) > n such that i( - u <. nce the methol

-•M k!k

--T Is supposed to be finite-roved, all the sets S are open. Obviousiy,s~k "iM

kalso, all S D D. It is not difficult :o showathat the set Q. ! S.
n,m

satisfies tht conditions of the theorem. Going on to the proof of its second

part, we take thn series > 0, and the regular method

T :1a ij where a (0-lenm<nanda CL)n when w n.
n,M nM 0 n,m rM-rV-I

If we set a -L (n - 1,2,...), then c (x) will not have meaning for any n and

n n

x whatever. Indeed, if x ,-- then

kk-4

.) The sign 4(f) means mcnotonic detrease (increase) of the corresponding sequence.
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By virtue of the condition ak1, the terms of the last series cannot be less than

unity iA absolute value, i.e. a (x) are not meaningful. The theorem is completely
n

f :proved.

Remark 2. Generally speaking, inclusion (1) cannot be replaced by an

equality. Indeed, let us choose an arbitrary dlverging botuded sequence [s j for

which ts I' is not a connected set, and as the method T let us choose the method

""C, 1). As is ivel kuown [6., the set tna for the method (C, 1) and for the
ns} )is connected; and since S- is not connected in the

bounded sequences nn t

given ekample, the equality in (1) does not hold.

Remark 3. The measure of the set Q in theorem 2 can be equal to 0 and 1.

For example, if T - (Cl) and. [s j is a certain divergent bounded (C,l)-summable

sequence, then, as follows from theorem 2 of Buck and Pollazd [1], almost all

the subsequence8 £sG',x)} are also (C,l)-summable. Ccnsequently: in this case

mes Q - 0. But if T is cuaverence, then, according to theorem 1, we have

mes Q - 1. Whether there exist T methods for which 0 < mes Q < 1, we do not know.

Now let us formulate a result on the summ&tion of sequences of O's and l's.

If x E (0,12 and T - %1  ;is a regular method, then we set ,., ) U.. (x),
n,ki

Theorem 3. For every regular method T there exists a set Q of second

category M (0,1]. such that

Proof. According to Agnew'R theurem L2], for a certain point x0 E (0,1)

we have ta(nx 0 )Y {1fil;Oj. This inclusion is preserved i.f at x0 we arbitrarily

This theorem generalizes theorem (2.3) of Hill.

S.jl;Os means a set of tme elements: I and G.
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change several first coordinates. Therefore, there is found a set D, everywhere

dense on (0,13, such that lc(n,x))" M [1;0) for x E D. Let (um} be a diverging
5-C

sequence of O's and l's.We let S' (n,m,k - 1,2,...) denote the set of all.

pý7ints x E (0,1], for each of which there exists a ji u(x) > n such that

S(x) - un[ /k. Obviously, S are open (since, without loss of generaiity,

the method T can be considered finite-rowed) and S D D (n..,k 1,2,...).
n m

Then, Q [ Sf] is the desired second-category set. The theorem is proved.

Remark 4. The measure of the set Q in the given theorem can he only

1 or n, since this set is homogeneous (the definition of a homogeneous set is 1

given in [I", see also [7), p. 403). The first case is realized, e.g., when the

method T is convergence, and the second ihen T - (Cl), since in this case, accord-

ing to Borel's theorem [8], we have t((n,x)J 1 i f/2J almost everywhere on (0,1).

Remark 5. According to Khinchin's law of the iterated logarithIm [9), j

on the set E C (0,1 of complete measure g where Vn(z) is

0 n1 n -

the number of zeros among the first n signs of the dyadic expansion x. But

(x)•n - a# (x) and, applying the preceding theorem with T (C,l), we get

W ia(x)--'- l for x E rQ, where Q is a certain

2

seccr4-category set on (0,1). Hence It follows that the set in Khinchin's M

theorem is of the first category , although it is of camplete measure.

Itroduced in the definition of the ccacept of density of a sequeuce of

Note added in peoof. Recently it was made known to the author that this

-result follows from theorem 2 of [14).
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a natural series in the quantity dn(nk} - • L, where N(n) is the number of
n k ti

terms of the given sequencea [nkJ that do not enceed n. If lim a n nk) - d exists,

then d is called the density of the sequence (nkln in the natural series. If the

latter limit does not exist, then the upper density d ii dn and the lower

density d lim d(nk) are introduced. Using the correspondsnce introduced above,
n

tnkl ~ x E (0,1), we get a (.

According to Borel's theorem [8j, we have lim d (x) 1 1/2 almost
n n

everywhere on (0,1], that is, almost all the subsequences of a natural series

Iave density, and it is equal to 1/2 for almost all of them. Insofar as the cat-

egory is concerned, the situation is different. Namely: (d W(XY [0,1i for
n

x E Q, where Q C (0,1) is a certain second-category set. In fact, according to

theorem 3, if we set T - (C,l)in it, we have dn(x)dj' _ 1;0} for x E Q C (0,1),

where Q is of the second category. But, as was already noted in remark 2, the set

I! J'I is connected for the methoi (C,X) applied to bounded sequences; therefore,
n

tdn(x)j' : [C,lj for x E Q. But since 0 S dn(x) . 1, we find that [d (x) = [0,])

for x • Q, which :s what was statcl. Thus, a second-category set of subsequences

of a natural series does not have density; moreover, d(x) = 0, d(x) 1 on a M

second-category set.

Now let A(x) be a subsequence, defined by the number x E (0,13, of a

natural aeriec. Let A(x)A(y) denote a sequence (in increasing order) whose terms

are all elements common to A(x) and A(y). The sequence A(x)A(y) may prove to be

finite or empty, that is, not having even one term. Let dn (A(x)A(y)/A(x)) denote

the number of terms of the sequence A(X)A(y) among the first n terms of the sequence

A(x), divided by n, And let d (A(x)) be the number of terms, divided by n, of the

sequence A(x) among the first n positive numbers, The quantitites 4 (A(.x)A-y)/A(x))
n

characterize the "distribution" of the sequenceA A( In A(x) an the qua:-

tities d (A(x)) the "distxibution" of th sequenace A(x) itself in a natura series.

-7-



Theorem 4. For I point x0 E (0,11 there exists a set of complete

measure on (0,1] such that _

Sd.(A(x)A(xo)/A(,))l'={a,.(A(xo))}' when xEQ. (2)

Proof. It is not difficult to see that

_d,.A(x) A (xj)!A (x))I' -, " •J

• But k(x) =�Cl rk(x)i almost everywhere, where rk(x) (k - 1,2,...) are Rade-
55kr(x

macher functions (60], p. 55), and the preceding equality can be represented as

I7L ~(X.)- .. k 2(xo) r*(x)

{, (A (x) A (xo)IA (x)1" i t
(3)

- rI (X)

k-1

According to lemma 5 of Buck ard Pollard Eli, iim 1  ser(x) =0 elvays

A-1

almost everywhere provided < 0o. Therefore, there exist&j a set 0. (0CG]

of complete measure such that

n n.,. - .,o ,o ,Q
k-1 k-1

If we take into account the fact that d•(A(xo))mi '(x 01, then (2)

follows easily from (3) and (4). The theorem, is proved.

Roughly speaking, the meaning of this theorem is that the "distribution"

of terme of the fixed sequence 4.n I i almost all subsequences of a natur•1 series

is the same as the "distribution" of the sequence in I itself in a natural series.A

-8-



Let us now apply ourselves to functional sequences. If [sa(t)] in a J9

sequence of functions given on a certain set, then asX(t)0 denotes ite subsequence,

defined by the number x E (0,1].

Theorem 5. if the soauence (. (t)] ,f functiots measurable and almost

everywhere finite on the set*E diverges almost everywhere on E, there exists a

second-category set Q C (0,1) such that the sequenccs t's (t)1 converge almost

everywhere on E for every x E Q.

Proof. We introduce the notation

Ti-i 4(t) lint 1rm sup s.. It, 7- im 11m FP,, (t) = Jim Fa (t• F' (0),

"(5)I im s) (- IIn im In! s,() (f) Jim I ; • (A) nn' f ''./ ' /6' (t).

1We shall assume that F kt) ar' f (t) are finite almost everywhere on E. Without

this assumption, only several technical complications arise in the proof.

Let £ 0 and E > 0. According to the condition of the theorem,

) f(t) > 0 almost everywhere on E; therefore, for Any Ek khere exists an

Ctk > 0 such that for the set E = Ejt:F (t) - if(t) >ak we 'hve

ues - < it,,. (6)

We denote by (Nk - 1,2,...) the set of all x E (0.11 fer each of which there

exists a set

E1-ac4LE, where e( P.)<()

and indexes T• , (x), U(x1, V(x) 2 N, (z > T, u z v) such that

F 1 vT 1 for 14~ (Z)

Obviously, every set % is open. Let us show that

We note that the divergence of a sequence at a given point is understood in 7-i
the sense that the upper and lower limits are not equal to each other. But
if they coincide, although being equal to t• (-'), the sequence it considered A
to be convergent.

-9-



where R is the oet of all dyadic rational points from (O,l]. Let us fix arbitrary

N and k, and also x E R. According to (5) and Egcrov's theorem, we find a set

E,k Ek(x) and an index 71 T (x) N for which

e$ () < -&- and < for ikEN.A. (10)~N 4 8i

!n exactly the same way it is possible to find a set E" ENk(x) and an index

- (x) k N, E 2 TI, such that

and AFý(O)< ,jnd< - for I E£r.. (11)
4 8

As follows from (10) and (1)0
A

IF (1) F- (i) I< a- for I E-N. kEv. it EN.,, and

rnes(E,--N.* ) - (12)

Analogously it is possible to construct a set EN.k'EN.A(X) W C4Ea,

such that for several indexes 4(x), v(x) " N, t -> V, we will have

for c and mes (E. -N. (13)
"4 2

From (12) and (13) we get

A V
F (t)-- ,(f) > Fx(!)--f*'t)--L for IEE.v.tEN. k E .t, (14)

x ~xI
where s (Ek ) < EN Taking into account the equality Ek Et:EX(t)

X A
f (t) >a-ki for all x E R, where EN. E from (14 we get

F- F(t)--fU) >-* for I E' .t, am? mes(Et - E"',,.k) <tV. .

By this very fact inclusion (9) is proved.

Thus, all sets R• are open and everywhere dense on (0,11. Hence, t6ze

set Q= [ N is of second category in (0,1]. Let us show that the set Q
SN. h

satisfies the conditions of the theorem. Let x0 E Q, and NX--li ir t.

According to (6),(7) and the condlt.ot. k 0, we have mes u mes E. Let us

Acodigt (6,% A. IS- E Te

"show that idx*(t)) diverges on EY'. Let t E E'x and Tim Ek E' Then
Lk N N'k k

-10-
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there Is found an Index k - k (t) satisfying the condition t E E% From

this, in turn, follows the existence of a sequence of indexes " J N(tO)J

such that to E !'° (1 * 1,2,...). But this inclusion, in conjunction with (8),Nt'k

yields FNQ (t ) fO X°(t0) . -2 Since x0 E Q and to E Eyc are arbitrary, while

5es ENO mes E, the theorem is proved. A

Theorem 5 admits of the following equivalent formulation adjoining

Tauber-type theorems.

Theoxem 5". If the sequence (Sn(t)j of functions measurable and almost

everywhere finite on the set E is such that there exists a set Q c (0,1) of

second Eategory and that the sequences [sa(t)] converge almost everywhere on E
__ n

for ev ery Y E Q, then Is (t)j convergs almost evex'e on E.
n

It is useful to note that here the convergence set of the sequence

Lsn (t)j depends, generally speaking, on x. The theorem of Keogh and Petersen [13]

may suggest that theorem 5S admits of such a generalization, If the sequence

(5 (t)) of functions measurable and almost everywhere finite on the set E and the

regular method T w ,,1a ?1 are such that there exists a second-category setn *

Q C (0,11 and that the sequences Is (t)l are summed by the T method almost every-
n

where on E for every x E Q, then [sn(t)) converges almost everywhere on E. But

such a generalization is not valid. This follows from the theorem of P.L. Ul'yanov,

given in the review to the Russian trarslation of the book of R. Cooke "Infinite

Matrices and Sequence Spaces" (7j, p. 402, theotem 5.4).

Now let us consider rearrangements. Let y" [n'} and y' (n'j be

two rearrangements of the numbers of a natural series. We determine the distance

between them by means of the Frechet metric:

t,(.',y)= 2*I*•n;- "21 "
2. 1 -;-



Then the set P of aCl rearrangements vill be a metriz Baire space (not complete)

of the second cotegory [II]. For the regular method T ,1a n!! and the sequence

.s n] we set •

ki-I k

if y i tnki is the rearrangement of the natural series. The following is an

analog of theorem 2.

Theorem 6. If T = ia il is a regular method, and Is j C (n = 1,2,..).

then there exists a set U of the second category in P such that tn (y)" Z (saf

VW.
an

whev y E U.

This theorem partially generalizes theorem 4 e f [12r.m:

The following is an analog of theorem 5 for series.

Theorem 7. If the series d ,(t), whera e ul n (t) are measurable functions,

almos.t evryhere finite on the set E, is such that after some rearrangement of •

terms t diveres almost everywhere on Es there exists a set U of the second

category in P suchathat the series U" (j) diverges almost everywhere on E for -•

k-

Theorem 7 can be stated in the following equivalent form:

Theorem 7'. If the series V a.t, • U(t) are measurable and-?

almost everywhere finite on E) is such that ther,:- exists a set U of the second

.= ~~category in P and the series uEEt) toyer, aosevrwhere on E for every£K

[nkj - y 41 U, then th series, u. () Iafter any rearrangement_ o-•----.--f terms con-.-3

verges almost everywhere on E, i.e. y ~) converges unonitionally almostZ

everZwhere on E.V

For the rearrangements it is possible to introduce quantities d n(y)
analogous to d (x) for the subsequencer. We denote by N(n,y) the number of termsA

n

of the rearrangement y - in k among the Uirst n of its terms that do not exceed

N(n-,y2
n aad we set d (y)2

n n "

-12-
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Theorem 8. There exists a set U of the second category in P such that

E when y E U we have (da~)' 0I

R We shall omit the proofs of theozems 6, 7 and 8, in view of their com-

plete analcgy with the proofs of the corresponding assertions for subsequences.

S• In conclusion the author expresses his gratitude to Prof. P.L. Ul'yanov

for his constant interest in this work and for his va!uable comments.

Moscow Received
• •December 21, 1962
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